An Introduction to the Augmented Inverse Propensity Weighted Estimator

نویسندگان

  • Adam N. Glynn
  • Kevin M. Quinn
چکیده

In this paper we discuss an estimator for average treatment effects known as the augmented inverse propensity weighted (AIPW). This estimator has attractive theoretical properties and only requires practitioners to do two things they are already comfortable with: (1) specify a binary regression model for the propensity score, and (2) specify a regression model for the outcome variable. After explaining the AIPW estimator, we conduct a Monte Carlo experiment that compares the performance of the AIPW estimator to three common competitors: a regression estimator, an inverse propensity weighted (IPW) estimator, and a propensity score matching estimator. The Monte Carlo results show that the AIPW estimator is dramatically superior to the other estimators in many situations and at least as good as the other estimators across a wide range of data generating processes. ∗Department of Government and The Institute for Quantitative Social Sciences Harvard University, 1737 Cambridge Street, Cambridge, MA 02138. [email protected] †Department of Government and The Institute for Quantitative Social Sciences Harvard University, 1737 Cambridge Street, Cambridge, MA 02138. kevin [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust and Efficient Estimation of Average Treatment Effects in Cross-Sectional Studies: An Introduction to the Augmented Inverse Propensity Weighted Estimator

In this paper we discuss an estimator for average treatment effects known as the augmented inverse propensity weighted (AIPW). This estimator has attractive theoretical properties and only requires practitioners to do two things they are already comfortable with: (1) specify a binary regression model for the propensity score, and (2) specify a regression model for the outcome variable. After ex...

متن کامل

Nonparametric Likelihood and Doubly Robust Estimating Equations for Marginal and Nested Structural Models

Drawing inferences about treatment effects is of interest in many fields. We consider Robins’s marginal and nested structural models and propose likelihood and regression estimators in the cross-sectional setting. First, we choose to retain a finite subset of all inherent and modelling constraints on the the joint distributions of potential outcomes and covariates under a correctly specified pr...

متن کامل

An augmented inverse probability weighted survival function estimator

We analyze an augmented inverse probability of non-missingness weighted estimator of a survival function for a missing censoring indicator model, in the absence and presence of left truncation. The estimator improves upon its precursor but is still not the best in terms of achieving minimal asymptotic variance.

متن کامل

An application of collaborative targeted maximum likelihood estimation in causal inference and genomics.

A concrete example of the collaborative double-robust targeted likelihood estimator (C-TMLE) introduced in a companion article in this issue is presented, and applied to the estimation of causal effects and variable importance parameters in genomic data. The focus is on non-parametric estimation in a point treatment data structure. Simulations illustrate the performance of C-TMLE relative to cu...

متن کامل

An Impact Estimator Using Propensity Score Matching: People’s Business Credit Program to Micro Entrepreneurs in Indonesia

P eople’s business credit program (KUR) has been launched to alleviate poverty through provision of micro financing to micro entrepreneurs in Indonesia This study aims to estimate the impact of KUR program using cross-sectional data and propensity score matching technique (PSM). The survey was conducted on 332 household entrepreneurs, consisting of 155 KUR receivers and 177 non-KUR r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009